

Smart grid project **SINCRO.GRID**

33. Symposium - CIGRÉ Srbija, Zlatibor, 06.06.2017.

mr.sc Dragutin Mihalic, dipl. ing., Croatian Transmission System Operator Ltd

SINCRO.GRID innovative approach

SINCRO.GRID – Compensation devices

SINCRO.GRID – Dynamic thermal rating (DTR)

- using advanced algorithms and sensors
- better utilization of the existing grid
- increased maximum thermal capacity

+540,0 MW

HR

Đakovo

←229,0 MW ←194,7 MW

SINCRO.GRID - Batteries and integration of DG

- Batteries with a capacity of 10 MW in Slovenia
- Integration of distributed renewable generation

SINCRO.GRID – Virtual cross-border control centre (VCBCC)

- voltage control and loss optimization
- efficient and coordinated management of RES
- > secure operation of the whole control area

Synergies between SINCRO.GRID components

Total investment costs of SINCRO.GRID project in €

- Overall investment costs amount 88,6 million Euros
- ➤ **40,5 million** of EU funding from the CEF (51%)

Total investment costs

Main steps taken by the SINCRO.GRID project so far

27.02.2015.	Submission of PCI application for projects with smart grid dimension
18.11.2015.	PCI labelling (Project no. 10.3) The project was successfully applied for the 2nd list of PCI projects in 2015 Best evaluated project in EU in the smart grids field
08.11.2016.	Submission of Connecting Europe Facility (CEF) application
17.02.2017	EU Member States agreed on the Commission's proposal to invest €40,5 million

Grant agreement signed

22.05.2017.

SINCRO.GRID – Project timeline

Project Timeline

SINCRO.GRID – Compensation devices part of SINCRO.GRID

Main benefits of compensation devices:

- Solving issue of voltage profiles in both transmission systems of Slovenia and Croatia
- Extension of equipment lifetime due to lower dielectric stress
- Increased security of supply due to decreased insulation failure probability
- Load flow optimization
- Improved dynamic system response

SINCRO.GRID – Croatian voltage profile

Main issues:

- Very high voltages in 400 kV and 220 kV network during low load periods
- Southern part of country faces more sever voltages

SINCRO.GRID – Voltage profile after deployment of compensation

---Pmin.Ref

→ Pmin.Ref + V1.Sc.01

SINCRO.GRID – Compensation technology

<u>Dual impact on the overall transmission network losses:</u>

- > own-consumption of devices
- > reducing "transmission losses" through the control range of output power

SVC → greater impact on transmission loses

SVC \rightarrow 1.5 to 3.3 times greater losses than the VSR

SINCRO.GRID – 220 kV network

Installation of compensation devices in 220 kV network = lower losses

SINCRO.GRID – final solution

- ➤ Three compensation devices in 220 kV nodes
- > 550 Mvar:
 - SVC Konjsko 250 Mvar
 - VSR Melina 200 Mvar
 - VSR Mraclin 100 Mvar

Co-financed by the European Union

Connecting Europe Facility

Thank You for your attention

Disclaimer:

"The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein."

